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1. Introduction

In four dimensions, the near horizon geometry of BPS black hole solutions is characterized

by attractor equations [1 – 3] which, at the two-derivative level, follow from the extrem-

ization condition of the black hole central charge Z, i.e. DZ = 0. The latter exhibits

an interesting similarity to the condition DW = 0 for supersymmetric flux vacua, where

W denotes the flux-generated superpotential in type II or F-theory compactifications. A

connection [4] between black holes and flux compactifications is provided by type IIB BPS

black hole solutions, for which the near horizon condition DZ = 0 can be viewed as the

extremization condition of a five-form flux superpotential W generated upon compactifying

type IIB string theory on S2 × M , where M denotes a Calabi–Yau threefold (for related

work see [5 – 8]). The resulting 1 + 1-dimensional space-time has a negative cosmological

constant determined by the value of W at the extremum [4].

In view of this connection, it was suggested in [4, 9] to interpret the exponentiated

entropy of large BPS black holes in Calabi–Yau compactifications as an entropic function

for supersymmetric flux compactifications on AdS2 × S2 ×M . At the two-derivative level,

the entropy of a black hole is given by the area law of Bekenstein and Hawking, which for

large BPS black holes takes the form [10]

S = π |Y 0|2 e−G(z,z̄) , (1.1)

where, in a certain gauge, G(z, z̄) reduces to the Kähler potential for the moduli fields

zA = Y A/Y 0 belonging to vector multiplets labelled by A = 1, . . . , n. The fields Y 0 and
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zA are expressed in terms of the black hole charges (pI , qI) by the attractor equations. Once

the charges are identified with fluxes, each choice (Y 0, zA) translates into a particular flux

compactification. By fixing Y 0 to a specific value Y 0
f , the entropy (1.1) can be viewed as a

function over the moduli space of the Calabi–Yau threefold, and to each point zA in moduli

space one assigns a (suitably normalized) probability density eS (entropic principle [4, 9]).

The entropy of BPS black holes is corrected by higher-curvature interactions [11].

Therefore, the probability density for AdS2 vacua with five-form fluxes is modified due to

R2-interactions. In this paper, we will be interested in studying the maximization of the

entropy, viewed as a function over the moduli space of the Calabi–Yau threefold, in the

presence of higher-curvature corrections.

We study the entropy extremization in the neighborhood of certain singularities of

Calabi–Yau threefolds. Our results differ from [9], because in contrast to [9], we do not

consider the extremization of the Hartle–Hawking type wave function |ψ0,0|
2,1 but in-

stead the extremization of the wave function |ψp,q|
2, whose value at the attractor point

is the exponential of the entropy [4]. We find that singularities where an excess of addi-

tional massless hypermultiplets appear, correspond to local maxima of the entropy. There-

fore, following the entropic principle, the associated vacua would have a higher probabil-

ity.

We demonstrate that the gravitational coupling F (1) leads to an enhancement of the

maximization of the entropy at these singularities. For the case of the conifold, we also

take into account the contribution from the higher coupling functions F (g) by resorting to

the non-perturbative expression of the topological free energy computed in [12, 13] for the

resolved conifold. We find that the entropy is maximized at the conifold point for the case

of real topological string coupling constant, whereas it ceases to have a maximum at the

conifold point for complex values of the coupling constant.

This paper is organized as follows. In section 2 we discuss the entropy as a function on

the moduli space of Calabi–Yau compactifications. Since the number of physical moduli

zA is one less than the number of pairs of black hole charges (pI , qI), one has to fix one

particular charge combination in order to discuss the maximization of the entropy with

respect to the zA. One way to do this is to set Y 0 to a constant value throughout moduli

space, which implies that the topological string coupling constant is held fixed. This is

reviewed in section 3. In section 4 we discuss the maximization of the entropy computed

from the prepotential F (0). We give a basic example which shows that entropy maximiza-

tion occurs whenever a surplus of hypermultiplets becomes massless at the singularity. We

then comment on various concrete models. In section 5 we discuss entropy maximization

in the presence of higher-curvature interactions by using the genus expansion of the topo-

logical free energy. For the case of the resolved conifold, we also use the non-perturbative

expression for the topological free energy to discuss entropy maximization near the re-

solved conifold singularity. In section 6 we discuss the minimization of the OSV free

energy [14]. Section 7 contains our conclusions, and appendix A our normalization con-

ventions.

1We thank S. Gukov, K. Saraikin and C. Vafa for clarification of this point.
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2. The entropic function

We begin by recalling various properties of the entropy of four-dimensional BPS black holes

in N = 2 supergravity theories. In the absence of higher-curvature corrections, the entropy

is given by the area law of Bekenstein and Hawking, which for BPS black holes takes the

form [10]

S = π i
(

Ȳ I F
(0)
I (Y ) − Y I F̄

(0)
I (Ȳ )

)

= π |Y 0|2 e−G(z,z̄) . (2.1)

The fields Y I are determined in terms of the charges carried by the black hole by virtue of

the attractor equations (see section 3). Here,

F (0)(Y ) = −i (Y 0)2 F (0)(z) , zA = Y A/Y 0 , (2.2)

denotes a holomorphic function which is homogeneous of degree two, i.e. F (0)(λY ) =

λ2F (0)(Y ) for any λ ∈ C \ {0}. The indices run over I = 0, . . . , n and A = 1, . . . , n, and

F
(0)
I = ∂F (0)/∂Y I . The quantity G(z, z̄) is given by

e−G(z,z̄) = 2
(

F (0) + F̄ (0)
)

− (zA − z̄A)
(

F
(0)
A − F̄

(0)
A

)

, (2.3)

where F
(0)
A = ∂F (0)/∂zA. The Y I are related to the holomorphic sections XI(z) of special

Kähler geometry [15 – 17] by Y I = eK(z,z̄)/2 Z̄ XI(z), where Z denotes the central charge,

and where K denotes the Kähler potential

K(z, z̄) = − log
(

iX̄I(z̄)F
(0)
I (X(z)) − iXI(z) F̄

(0)
I (X̄(z̄))

)

. (2.4)

Under Kähler transformations,

XI(z) → e−f(z) XI(z) , K(z, z̄) → K(z, z̄) + f(z) + f̄(z̄) , Z → e−
1
2 [f(z)−f̄(z̄)] Z . (2.5)

It follows that the Y I are invariant under Kähler transformations, and so is G. Compar-

ing (2.4) with (2.3) yields

G(z, z̄) = K(z, z̄) + log|X0(z)|2 . (2.6)

In the gauge X0(z) = 1, we have G = K. On the other hand, in the gauge X0(z) =

W (X(z)), where W (X(z)) denotes the holomorphic central charge W (X(z)) = e−K/2Z,

we have G = K + log|W |2 = 2 log|Z| [18].

The exponentiated entropy of large BPS black holes in Calabi–Yau compactifications

was proposed in [4, 9] as a probability density for supersymmetric flux compactifications on

AdS2 ×S2 ×M , where M denotes a Calabi–Yau threefold. For this to be an unambiguous

assignment, however, Y 0 must be fixed. One possibility would be to allow Y 0 to vary in

a prescribed way as one moves around in moduli space, i.e. Y 0(z, z̄). A more economical

possibility consists in assigning the same value Y 0
f to all points in moduli space, i.e. Y 0 =

Y 0
f [9]. The fields Y 0 and zA are expressed in terms of the black hole charges by the

attractor equations [1 – 3], as will be reviewed in section 3. These charges are in turn

interpreted as flux data. Therefore, to each particular flux compactification we can assign

– 3 –
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a probability density proportional to eS |Y 0
f
. Fixing Y 0 to a particular Y 0

f means choosing a

codimension one hypersurface in the complex space of charges (assuming that the charges

are continuous), which provides a mapping between moduli zA and charges (pI , qI).

Having fixed Y 0 = Y 0
f , one may look for maxima of (2.1) in moduli space, i.e. for

maxima of e−G(z,z̄) in a certain domain. Local extrema in the interior of this domain

satisfy ∂A e−G(z,z̄) = 0. In order to determine the nature of these critical points one

can analyze the definiteness of the matrix of second derivatives of e−G(z,z̄). At a critical

point, ∂A∂B̄ e−G = −gAB̄ e−G, where gAB̄ = ∂A∂B̄K denotes the Kähler metric. If F
(0)
ABC

and gAB̄ are finite, then ∂A∂B e−G vanishes there. This can be best seen [18] in the

gauge X0(z) = W (X(z)), where the vanishing of ∂A∂B e−G translates into the vanishing

of ∂A∂B |Z|. The latter is guaranteed to hold by virtue of special geometry [19], provided

that F
(0)
ABC gCC̄ is finite. By direct calculation, the vanishing of ∂A∂B e−G implies that

(zC − z̄C)F
(0)
ABC vanish. Thus, it follows that if the metric gAB̄ is positive definite, the

critical point is a maximum of e−G [20, 18].

In Calabi–Yau compactifications, and for large values of the moduli zA, F (0)(z) is a

cubic expression in the zA and therefore, the entropy (2.1) grows to infinity as zA → ∞.

Hence, in order to study the maximization of e−G(z,z̄) in a well-posed way, we restrict

ourselves to a finite region in moduli space and ask, whether the entropy has local max-

ima in this region. As we will discuss in section 4, a class of such points is provided by

singularities of the Calabi–Yau threefold at which an excess of (charged) hypermultiplets

becomes massless. Examples thereof are the conifold of the mirror quintic [21] as well

as singularities associated with the appearance of non-abelian gauge symmetries with a

non-asymptotically free spectrum [22, 23].

Consider the case when the singularity is characterized by a vanishing modulus V =

−iz1 with F (0)(z) ∼ p(T ) − V 2 log V , where p(T ) denotes a function of the remaining

moduli, which are held fixed. This results in F
(0)
V V ∼ − log V as well as F

(0)
V V V ∼ −V −1,

which diverges as V → 0, while (z1 − z̄1)F
(0)
111 ∼ (V + V̄ )F

(0)
V V V ∼ (1+ V̄ /V ) remains finite.

This is thus an example where F
(0)
ABC tends to infinity in such a way that ∂A∂B e−G remains

finite and non-vanishing at the singularity. The function e−G has an extremum at V = 0

(see section 4). Since the metric gAB̄ diverges at the singularity, it follows that ∂A∂B e−G

is smaller than ∂A∂B̄ e−G. Since the metric gAB̄ is positive definite near the singularity,

the extremum of e−G at V = 0 is a local maximum.

The maximization of the entropy may be further enhanced when taking into account

higher-curvature corrections. This will be discussed in section 5. In the presence of such

corrections, the entropy ceases to be given by the area law (2.1). For the case of a certain

class of terms quadratic in the Riemann tensor encoded in a holomorphic homogeneous

function F (Y,Υ), the macroscopic entropy, computed from the associated effective N = 2

Wilsonian action using Wald’s law [24], is given by [11]

S = π
(

i
(

Ȳ I FI(Y,Υ) − Y I F̄I(Ȳ , Ῡ)
)

+ 4 Im (Υ FΥ)
)

, (2.7)

where FI = ∂F/∂Y I and FΥ = ∂F/∂Υ. Here Υ denotes the square of the (rescaled)

graviphoton ‘field strength’, which takes the value Υ = −64 at the horizon of the black hole.
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The Y I are determined in terms of the black hole charges by the attractor equations (3.1).

The term π i
[

Ȳ I FI(Y,Υ) − Y I F̄I(Ȳ , Ῡ)
]

describes the R2-corrected area of the black hole,

while the term 4π Im (Υ FΥ) describes the deviation from the area law due to the presence

of higher-curvature interactions.

3. Fixing Y 0

In the presence of higher-curvature corrections encoded in F (Y,Υ), the attractor equations

determining the near-horizon values of Y I take the form [11]

Y I − Ȳ I = ipI , FI(Y,Υ) − F̄I(Ȳ , Ῡ) = iqI , (3.1)

where (pI , qI) denote the magnetic and electric charges of a BPS black hole, respectively.

Since F (Y,Υ) is homogeneous of degree two, i.e. F (λY, λ2Υ) = λ2F (Y,Υ) for any λ ∈

C \ {0}, then by Euler’s theorem

2F − Y IFI = 2ΥFΥ , (3.2)

and consequently

F0 =
1

Y 0

(

2F − 2Υ FΥ − zA ∂F

∂zA

)

, (3.3)

where zA = Y A/Y 0. Using (3.1) we compute

zA ± z̄A =
1

2|Y 0|2

(

∓i pA(Y 0 ∓ Ȳ 0) ± (Y A + Ȳ A)(Y 0 ± Ȳ 0)
)

. (3.4)

As discussed in the previous section, we would like to fix the value of Y 0 to a constant

value Y 0
f throughout moduli space. Inspection of (3.4) suggests to take either Y 0

f = Ȳ 0
f or

Y 0
f = −Ȳ 0

f , since this leads to a simplification of the expression. Note, however, that in

order to be able to connect four-dimensional BPS black holes to spinning BPS black holes

in five dimensions [25, 26], both q0 and p0 have to be non-vanishing, which requires taking

Y 0
f to be complex.

Setting Y 0
f = Ȳ 0

f implies p0 = 0. Then, (3.4) reduces to

zA − z̄A =
i

Y 0
f

pA , (3.5)

and the second attractor equation in (3.1) gives

∂F

∂zA
−

∂F̄

∂z̄A
= iY 0

f qA . (3.6)

The value of Y 0
f is determined by the equation F0 − F̄0 = iq0, and is expressed in terms of

z, z̄ and q0. For instance, when neglecting R2-interactions, and using (3.2), it follows that

F0 = −iY 0
(

2F (0)(z) − zAF
(0)
A (z)

)

, (3.7)

– 5 –
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where we set F = F (0) = −i(Y 0)2 F (0)(z), and where F
(0)
A = ∂F (0)/∂zA. Then

Y 0
f = Ȳ 0

f = −
q0

2(F (0) + F̄ (0)) − (zAF
(0)
A + z̄AF̄

(0)
A )

. (3.8)

For a fixed value Y 0
f , one moves around in moduli space by changing the charges (pA, qA),

which results in a change of zA according to (3.5) and (3.6). However, in order to keep Y 0
f

constant as one varies zA, it follows from (3.8) that one must change q0 in a continuous

fashion. Since q0 is quantized, we need to take q0 to be large in order to be able to treat

it as a continuous variable. Observe that when Y 0
f is large, a unit change in the charges

(pA, qA) corresponds to a semi-continuous change of the zA.

Similarly, choosing Y 0
f = −Ȳ 0

f yields Y 0
f = ip0/2 fixed to a particular value. Then, (3.4)

and (3.1) yield

zA + z̄A = 2
pA

p0
,

∂F

∂zA
+

∂F̄

∂z̄A
= −

qA p0

2
.

(3.9)

A choice of charges (pA, qA) determines a point zA, and the remaining equation F0−F̄0 = iq0

determines the value of q0. This value will, generically, not be an integer, and therefore

consistency requires again taking q0 to be large in order to be able to treat it as a continuous

variable.

Observe that Y 0 is related to the topological string coupling gtop by (see (A.26))

(Y 0)2 g2
top = 4π2 . (3.10)

Therefore, we will be interested in taking Y 0 to be real (i.e. gtop real) or complex, but not

purely imaginary.

4. Entropy maximization near singularities

In this section we study the entropy in the absence of higher-curvature interactions and the

maximization of (2.3) near singularities of Calabi–Yau threefolds. Setting TA = −izA =

−iY A/Y 0, we obtain from (2.3)

e−G(T,T̄ ) = 2
(

F (0) + F̄ (0)
)

− (TA + T̄A)
(

F
(0)

T A + F̄
(0)

T̄ A

)

. (4.1)

Let us examine the case when one of the TA is taken to be small. We will denote this

modulus by V = −iz1 = −iY 1/Y 0. We consider the situation where e−G is extremized as

V → 0, while Y 0 and the remaining moduli T a are kept fixed. As our basic example, we

take the following F (0),

F (0)(V ) =
β

2π
V 2 log V + a , (4.2)

where β denotes a real constant, and where the constant a is complex. We compute

e−G(V,V̄ ) = 2
(

F (0) + F̄ (0)
)

− (V + V̄ )
(

F
(0)
V + F̄

(0)

V̄

)

= 4Re a −
β

2π
(V + V̄ )2 −

2β

π
|V |2 log|V | .

(4.3)

– 6 –
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Figure 1: e−G exhibits a local maximum at V = 0 for negative β.

We note that e−G(V,V̄ ) has a local maximum at V = 0 for negative β, and that the value at

this maximum is given by 4Re a ≡ e−G0 . This is displayed in figure 1. We take Re a > 0

to ensure that e−G(V,V̄ ) is positive in the vicinity of V = 0.

Observe that adding a cubic polynomial (and in particular a linear term) in V to (4.2)

does not affect the leading behavior of (4.3) near V = 0.

Next, we compute the metric on the moduli space near V = 0. Using

gV V̄ = ∂V ∂V̄ G = −eG ∂V ∂V̄ e−G + GV GV̄ , (4.4)

and taking V → 0, we find GV = −eG∂V e−G → 0 and

gV V̄ ≈
β

π
eG0 log|V |2 . (4.5)

Note that the result (4.5) depends crucially on having Re a > 0. Furthermore, for the

metric to be positive definite as V → 0, the constant β has to be negative.

We also compute the gauge couplings associated with (4.2) near V ≈ 0. Using [27]

g−2
IJ =

i

4

(

NIJ − N̄IJ

)

, NIJ = F̄IJ + 2i
ImFIK Im FJLY KY L

Im FMNY MY N
, (4.6)

we find, upon diagonalization, that one of the gauge couplings remains approximately

constant, while the other coupling exhibits a logarithmic running,

g−2 ≈ Re a , g̃−2 ≈
β

4π
log|V |2 . (4.7)

Observe that for negative β, the coupling g̃ becomes small as V → 0.

The basic example (4.2), with β = −1/2, describes the conifold singularity of the

mirror quintic in type IIB with V = ψ−1 (cf. (A.13)) [21, 28]. The metric (4.5) is precisely

the metric at the conifold point ψ = 1 (see table 2 of [21]). Since the conifold singularity is

associated with the appearance of one additional massless hypermultiplet [29], we see that

– 7 –
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we have entropy maximization when a hypermultiplet becomes massless at the singularity.

Note that the character of the extremum of the entropy (2.1) at V = 0 is independent of

the value of Y 0
f .

Next, consider the resolved conifold in type IIA. The associated F (0) is described

by (4.2) with β = −1/2 and a = 0 (cf. (A.13)) [13]. We compute the Kähler metric and the

gauge coupling in the associated field theory. We decouple gravity by restoring Planck’s

mass in (2.3) with G/M2
Pl and zA/MPl, and by expanding both sides of (2.3) in powers of

M−2
Pl [30],

G = K̂(z, z̄) + f(z) + f̄(z̄) + O(M−2
Pl ) , (4.8)

where

K̂ = −
(

z̄A FA + zAF̄A

)

. (4.9)

Using (4.2), we obtain near V = −iz1 → 0,

K̂ ≈
2β

π
|V |2 log|V | . (4.10)

Computing the corresponding Kähler metric near V → 0 yields

gV V̄ = ∂V ∂V̄ K̂ ≈
2β

π
log|V | , (4.11)

which is positive definite for β < 0. The gauge coupling is computed from (4.6) with

NIJ = F̄IJ [31]. We obtain

g̃−2 =
i

4

(

F̄11 − F11

)

≈
β

4π
log|V |2 , (4.12)

in agreement with (4.7).

More generally, whenever the singularity in moduli space is such that a sufficiently

large number of (charged) hypermultiplets becomes massless there, so that the resulting β

is negative, the function (2.3) exhibits a local maximum. Examples thereof are singularities

associated with the appearance of non-abelian gauge symmetries with a non-asymptotically

free spectrum [22, 23]. A concrete example is provided by the so-called heterotic S − T

model, which is a two-Kähler moduli model with a dual type IIA description in terms of a

hypersurface of degree 12 in weighted projective space P 4
(1,1,2,2,6) with Euler characteristic

χ = −252 [32]. The type IIA dual description is based on (A.2) with V = S − T and

n0,1 = 2. From (A.7) and (A.9) we infer that β = −1 and that a is positive. At V = 0, a

gauge symmetry enhancement takes place, whereby a U(1) group is enlarged to an SU(2),

with four additional (charged) hypermultiplets becoming massless there [22, 23]. The

entropy of axion-free black holes in this model does indeed have a maximum at S = T

(cf. eq. (4.34) in [33]).

5. Entropy maximization in the presence of R2-interactions

Next, let us discuss entropy maximization in the presence of higher-curvature interactions

encoded in F (Y,Υ). Usually, the quantity F (Y,Υ) is assumed to have a perturbative

– 8 –
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expansion of the form

F (Y,Υ) =
∞
∑

g=0

F (g)(Y )Υg . (5.1)

Then, expanding the entropy (2.7) in terms of the coupling functions F (g)(Y ) yields

S/π = |Y 0|2 e−G(z,z̄) − 2iΥ
(

F (1) − F̄ (1)
)

− iΥ(zA − z̄A)

(

Ȳ 0

Y 0

∂F (1)

∂zA
+

Y 0

Ȳ 0

∂F̄ (1)

∂z̄A

)

+ 2i
∞
∑

g=2

F (g)(Y )Υg

(

−g + (1 − g)
Ȳ 0

Y 0

)

− 2i
∞
∑

g=2

F̄ (g)(Ȳ )Υg

(

−g + (1 − g)
Y 0

Ȳ 0

)

− i(zA − z̄A)

∞
∑

g=2

Υg

(

Ȳ 0

Y 0

∂F (g)

∂zA
+

Y 0

Ȳ 0

∂F̄ (g)

∂z̄A

)

, (5.2)

where G(z, z̄) is given in (2.3).

Let us first discuss the effect of the gravitational coupling function F (1) on the max-

imization of the entropy. Let us again consider a singularity of the type (4.2) associated

with a vanishing modulus V = −iz1 = −iY 1/Y 0, while the other moduli are non-vanishing

and kept fixed. From (A.11) it follows that F (1) takes the form

F (1) ≈ −
i

64 · 12π
β log V (5.3)

near V = 0. We compute (using Υ = −64)

−2iΥ
(

F (1) − F̄ (1)
)

= 4 Im
(

Υ F (1)
)

=
β

3π
log|V | , (5.4)

which for negative β reaches a maximum as V → 0, i.e. Im
(

Υ F (1)
)

→ +∞.

On the other hand, the term proportional to F
(1)
1 in (5.2) only contributes with the

phases of Y 0 and Y 1,

−iΥ(z1 − z̄1)

(

Ȳ 0

Y 0

∂F (1)

∂z1
+

Y 0

Ȳ 0

∂F̄ (1)

∂z̄1

)

=
β

6π
(cos(2θ0) − cos(2θ1)) , (5.5)

where Y 0 = |Y 0| exp(iθ0) and Y 1 = |Y 1| exp(iθ1).

We conclude that, for negative β, not only does e−G have a maximum at V = 0, but

also the R2-corrected entropy (5.2) based on F (0) and F (1). Moreover, the contribution of

the coupling function F (1) is such that it enhances the maximization of the entropy.

The gravitational coupling function F (1) (as well as the higher F (g)) is known to receive

non-holomorphic corrections [34, 35]. For instance, for the quintic threefold [34] (and up

to an overall constant),

Re F (1) = log
(

g−1
ψψ̄

e
62
3

K |ψ
62
3 (1 − ψ5)−

1
6 |2

)

. (5.6)

Near V = −iz ≡ ψ − 1 ≈ 0, K = constant and gψψ̄ ∼ − log|V | [21], so that

ReF (1) ∼ − log(− log|V |) −
1

6
log|V |2 . (5.7)
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Therefore, as V → 0, the behavior of the non-holomorphic term is less singular than the

behavior of the holomorphic term, and it can be dropped from the maximization analysis.

Let us express V = −iY 1/Y 0 in terms of the charges q0, q1, p
0 and p1 by solving the

attractor equations (3.1). We take F (0) to be given by (4.2) and F (1) to be given by (5.3).

For simplicity, we take Y 1 to be imaginary and Y 0 to be real, so that V is real. Then

Y 1 = i p1/2, and Y 0 is determined by

4(Re a)(Y 0)2 + q0Y
0 +

β

6π
−

β

4π
(p1)2 = 0 . (5.8)

A large value of Y 0 can be obtained by choosing |q0| to be large (assuming Re a 6= 0),

whereas a small value of V can be achieved by sending p1 → 0. Observe that taking Y 0 to

be fixed at a large value is natural, since (5.1) is based on the perturbative expansion of the

topological string free energy, and Y 0 is related to the inverse topological string coupling

constant by Y 0 = 2π g−1
top (cf. (A.26)).

Next, let us discuss the effect of the higher F (g) (with g ≥ 2) on the maximization of

the entropy. It is known that the higher F (g) also exhibit a singular behavior at V = 0.

For concreteness, we consider the conifold singularity of the mirror quintic [21]. Near the

conifold point z = Y 1/Y 0 → 0 [35, 28],

F (g)(Y ) = i
Ag

(Y 0)2g−2 z2g−2
, g ≥ 2 , (5.9)

where Ag denote real constants which are expressed [28] in terms of the Bernoulli numbers

B2g and are alternating in sign. (cf. (A.28)).

Inserting (5.9) into (5.2) yields

S/π = |Y 0|2 e−G(z,z̄) − 2iΥ
(

F (1) − F̄ (1)
)

− iΥ(z − z̄)

(

Ȳ 0

Y 0

∂F (1)

∂z
+

Y 0

Ȳ 0

∂F̄ (1)

∂z̄

)

− 2

∞
∑

g=2

Ag Υg (Y 1)2−2g

(

−g + (1 − g)
Ȳ 1

Y 1

)

− 2
∞

∑

g=2

Ag Υg (Ȳ 1)2−2g

(

−g + (1 − g)
Y 1

Ȳ 1

)

.

(5.10)

We observe that the contribution from the higher F (g) (g ≥ 2) to (5.10) does not cancel

out. This is problematic, since the F (g) become increasingly singular as z → 0. For

instance, when taking Y 1 to be purely imaginary, the combination Υg(Y 1)2−2g is negative

for all g ≥ 2, and the total contribution of the higher F (g) to the entropy does not have

a definite sign due to the alternating sign of B2g. On the other hand, if we take Y 1 to

be real, then the total contribution of the higher F (g) to the entropy is positive, since the

combination AgΥ
g is positive for all g ≥ 2. This contribution becomes infinitely large

at Y 1 = 0. Thus, to get a better handle on the behavior of the entropy in the presence

of higher-curvature corrections near the conifold point V = 0, it is best to use the non-

perturbative expression for F (Y,Υ) for the conifold given in [12, 9], rather than to rely on

the perturbative expansion (5.1). This will be done next.
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Figure 2: S as a function of Q for gtop = 0.001 (left) and gtop = 10 (right). The conifold point

corresponds to |Q| = e−Re(2πV ) = 1 and arg(Q) = − Im(2πV ) = 0. The number of terms taken

into account was 100001 and 1001, respectively.

For the resolved conifold in type IIA, F (Y,Υ) is given by (see appendix A) [12, 9],

F (Y,Υ) = −C
∞
∑

n=1

n log (1 − qnQ) , (5.11)

where we neglected the Q-independent terms, since they do not affect the extremization

with respect to Q. Here q = e−gtop and Q = e−2πV . We impose the physical restrictions

Re gtop > 0 and Re V ≥ 0. The topological string coupling constant gtop and the constant

C are expressed in terms of Y 0 and of Υ via (A.26).

Under the assumption of uniform convergence, inserting (5.11) into (2.7) yields the

entropy

S=−
∞
∑

n=1

Re

(

nqnQ log q
[

n log q+2 log|Q|
]

log q̄(1−qnQ)
+

n
[

nqnQ log q−2(1−qnQ) log(1 − qnQ)
]

1 − qnQ

)

.

(5.12)

In order to determine the nature of the extrema of (5.12) we numerically approximated

this expression by a finite sum of a sufficiently large number of terms. To improve the

accuracy of the approximation, the summation was performed in the order of decreasing

n, so that subsequent summands were of comparable magnitude to the partial sums.

Let us first consider the case when gtop (and hence q) is taken to be real. We find that

the entropy attains a maximum at Q = 1, i.e. at the conifold point V = 0, regardless of

the strength of the coupling gtop, as displayed in figure 2. Observe that the maximum at

Q = 1 occurs at the boundary of the allowed domain, where derivative tests do not directly

apply. S(q,Q) is periodic in arg(Q) = − Im(2πV ).

As the string coupling becomes weaker, the convergence of the series slows down, and

the number of terms needed to be taken into account grows roughly proportionally to the

inverse coupling, independently of Q. This is shown in figure 3. We observe that apart

from the magnitude, the value of gtop has little influence on the shape of S(q,Q).
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Figure 3: Sums of the first N terms (partial sums) of (5.12) for gtop = 0.001 (left) and gtop = 10

(right) at the conifold point V = 0 (Q = 1).

Figure 4: S − S(0) as a function of Q for gtop = 0.001 (left) and gtop = 10 (right).

Next, let us subtract the tree-level contribution to the entropy, S(0), computed from

F (0) = C g−2
top Li3(Q) , (5.13)

so as to exhibit the contribution to the entropy from the higher-curvature corrections. The

tree-level contribution can be written as

S(0) =
2Re

[

Li3(Q) − log|Q| Li2(Q)
]

|log q|2
. (5.14)

When treated as a function of Q for a fixed q (observe that S(0) does not depend on

arg(gtop)), S(0) has a shape similar to the shape of S.

The difference S − S(0) amounts to the contribution to the entropy of the higher-

curvature terms. It depends on Q and gtop, as can be seen in figure 4. At the conifold point

V = 0, the difference S−S(0) is positive for small coupling gtop, whereas it becomes negative

for large values of gtop. At weak coupling higher-order corrections become negligible.

At strong coupling the corrections, albeit smaller, are comparable to S(0) and negative,

resulting in S ¿ S(0) (S(0) decreases as g−2
top, while S decreases as gtope−gtop for large gtop).

This is displayed in figure 5, where we plotted (S − S(0))/S.
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Figure 5: The ratio (S − S(0))/S as a function of gtop or q at Q = 1.

Finally, if we allow gtop to be complex the behavior of S changes markedly. As Re(V )

tends to zero, we notice increasingly pronounced oscillations, whose amplitude and period

sensitively depend on gtop (see figure 6). In effect, the maximum formerly at V = 0 is

displaced and new local extrema appear.

Note that the entropy (5.12) is not necessarily positive, because we have not in-

cluded the contribution stemming from the Euler characteristic of the Calabi–Yau threefold

(see (A.9)) and of other moduli (which, if present, we have taken to be constant).

6. Relation to OSV free energy

According to [14], the entropy (2.7) can be rewritten as

S = E − L , (6.1)

where E denotes the OSV free energy which, in the conventions of [36], reads

E = 4π Im F , (6.2)

and where L is given by

L = π qI φI = 4π Im FI Re Y I (6.3)

by virtue of the attractor equations

qI = 4
∂ Im F

∂φI
(6.4)

with φI = 2Re Y I .

The function F (Y,Υ) is related to the topological partition function Ftop by F (Y,Υ) =

−iFtop/(2π) (see (A.25) and (A.26) with Υ = −64). Using E = −(Ftop + F̄top) and

Ztop = e−Ftop , (6.5)

we obtain

eS = |Ztop|
2 e−L . (6.6)
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Figure 6: S as a function of Q for complex gtop. Left: gtop = 0.01 − 0.7i, right: gtop = 0.01 + 3i.

Note that the range of arg(Q) in the 3-dimensional graphs has been cut by half to exhibit the

point Q = 1 more clearly (but the periodicity remains 2π). The 2-dimensional graphs show in

greater detail the edges of the surfaces closest to the viewer (cross-sections through the surfaces

along arg(Q) = 0 and |Q| = 1).

For the resolved conifold in type IIA, the free energy E and L, computed from (5.11), are

given by

E = 2

∞
∑

n=1

n Re (log(1 − qnQ)) ,

L = 2
∞
∑

n=1

n

[

Im

(

qnQ log q

1 − qnQ

)

Im

(

log Q

log q

)

+ Re

(

1

log q

)

Re

(

qnQ log q(n log q + log Q)

1 − qnQ

)]

.

(6.7)
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Figure 7: E and L as functions of Q for gtop = 0.001 (compare with the left graph in figure 2).

Figure 8: Ratios E/L and E/S at the conifold point, plotted as functions of real q.

By numerically approximating these expressions as before, we find that for real coupling

gtop, the OSV free energy E is minimized at the conifold point Q = 1, see figure 7. The

entropy S is maximized at the conifold, as discussed before.

At the conifold point, E and L as functions of real q have the behaviour displayed in

figure 8. In the limit gtop → 0, we thus find that at the conifold point,

E =
1

2
L = −S (6.8)

(which holds for the sums, but not term by term). Hence, at the conifold point,

eS = |Ztop|
−2 . (6.9)

Observe that (6.9) is in agreement with (6.6) at the conifold point.

The relation (6.9) can also be derived from the prepotential F (0) given in (4.2), as

follows. At V = 0, by (2.1) and (4.3),

S = 2π |Y 0|2
(

F (0) + F̄ (0)
)

. (6.10)

Taking Y 0 to be real (which corresponds to real gtop), and using F = −i(Y 0)2 F (0), we

compute the OSV free energy (6.2) and find precisely

E = −S . (6.11)
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7. Conclusions

We have discussed entropy maximization with respect to one complex modulus at points in

moduli space at which an excess of hypermultiplets becomes massless. We found that the

function e−G(z,z̄) exhibits a local maximum at such points. When taking into account the

gravitational coupling F (1), the maximization is further enhanced due to the additional

term Im(ΥFΥ) in the entropy (2.7) representing the departure from the area law. The

inclusion of the higher F (g)-couplings into the maximization analysis is, however, prob-

lematic due to their singular nature at these points in moduli space. This problem can

be circumvented by resorting to the non-perturbative expression for the topological free

energy, rather than relying on its genus expansion. We did so in the case of the resolved

conifold, where we found that the conifold point is a maximum of the entropy for real topo-

logical string coupling, but ceases to be a maximum once the topological string coupling

is taken to be complex. Note that when performing the maximization analysis we kept Y 0

fixed throughout moduli space as in [9]. Other choices are, in principle, possible and could

modify the results concerning the maximization of the entropy.
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A. Normalization of F (Y, Υ)

In type IIA, F (0)(Y ) has the following expansion [21, 37 – 39]

F (0)(Y ) = (Y 0)2



−
CABCzAzBzC

6
+ h(z) −

1

(2πi)3

∑

dA

nd Li3(e
2πidAzA

)



 , (A.1)

where CABC are the intersection numbers and nd denote rational instanton numbers. The

quadratic polynomial h(z) contains a constant term given by i χ ζ(3)/(2(2π)3), where χ

denotes the Euler characteristic. Using (2.2) yields

F (0)(z) = −
i

6
CABCzAzBzC + ih(z) +

1

(2π)3

∑

dA

nd Li3(e
2πi dAzA

) . (A.2)

Observe that in the limit of large positive Im zA, e−G(z,z̄) (computed from (2.3)) is positive,

as it should.

The coupling function F (1)(Y ) is given by2 [34, 37, 39]

F (1)(Y ) = −
i

256π



−
2πi

12
c2A zA −

∑

dA

(

2n
(1)
d log(η(e2πidAzA

)) +
nd

6
log(1 − e2πidAzA

)
)



 .

(A.3)

2We use the normalization given in [11].

– 16 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
8

Consider a singularity associated with the vanishing of one of the moduli TA = −izA.

We denote this modulus by V . The other moduli are taken to be large, so that we may

approximate
∑

dA

nd Li3(e
−2πdAT A

) ≈
∑

dV

n0,0,...,dV
Li3(e

−2πdV V ) . (A.4)

Let us assume that that the only non-vanishing instanton number n0,0,...,dV
is the one with

dV = 1. Using

Li3(e
−x) = ζ(3) −

π2

6
x +

(

3

4
−

1

2
log x

)

x2 + O(x3) , (A.5)

we find that for V ≈ 0, the function F (0) can be approximated by

F (0) = −
CABCTATBTC

6
+ ih̃(iT ) +

β

2π
V 2 log V , (A.6)

where

β = −
n0,0,...,1

2
. (A.7)

The instanton number n0,0,...,1 counts the difference of charged hyper- and vector multiplets

becoming massless at V = 0, i.e.

n0,0,...,1 = nh − nv . (A.8)

Note that the quadratic polynomial ih̃ contains a constant term a given by

a = (2 − χ)
ζ(3)

2(2π)3
. (A.9)

Similarly, we find that near V = 0,

F (1)(Y ) = −
i

256π





2π

12
c2A TA − 2

∑

dA

n
(1)
d log(η(e−2πdAT A

)) +
β

3
log V



 . (A.10)

Therefore, near V = 0 we obtain

F (Y,Υ) =

∞
∑

g=0

F (g)(Y )Υg = F (0)(Y ) + F (1)(Y )Υ + · · ·

= −
i(Y 0)2

2π
β V 2 log V −

iΥ

64 · 12π
β log V + · · · ,

(A.11)

where we displayed only the terms proportional to log V .

The function F (Y,Υ) is proportional to the topological free energy Ftop(gtop, z). In

order to determine the precise relation between supergravity and topological string quan-

tities, we consider the case of the resolved conifold in type IIA. First, observe that for this

case the functions F (0) and F (1) are given by [13]

F (0) = −
V 3

12
+ ih(iV ) +

1

(2π)3

∑

n

e−2πnV

n3
,

F (1) = −
i

256π

[

2π

12
c2 V −

1

6
log(1 − e−2πV )

]

,

(A.12)
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where h(iV ) denotes a quadratic polynomial in V , and where c2 = −1. Observe that χ = 2,

so that a = 0. Using (A.5) and (A.9), it follows that near V = 0,

F (0) ≈ −
1

4π
V 2 log V ,

F (1) ≈
i

128 · 12π
log V .

(A.13)

Then, comparison with (A.6) and (A.10) yields β = −1/2.

The topological free energy for the resolved conifold reads [12, 9]

Ftop = −
∞

∑

n=1

n log(1 − qnQ) , (A.14)

where q = e−gtop and Q = e−t, and where we neglected the Q-independent terms. We now

review the standard argument leading to the expansion of Ftop in powers of gtop. Using

the Laurent expansions

log(1 − z) = −
∞
∑

k=1

zk

k
, |z| < 1 , (A.15)

and
∞
∑

n=1

nzn =
z

(1 − z)2
, |z| < 1 , (A.16)

we obtain for |qkQ| < 1 and |qk| < 1,

Ftop =

∞
∑

n=1

∞
∑

k=1

nqknQk

k
=

∞
∑

k=1

qkQk

k(1 − qk)2
=

∞
∑

k=1

Qk

4k sinh2(kgtop/2)
. (A.17)

The conditions |qk| < 1 and |qkQ| < 1 imply that Re gtop > 0 and Re t > −Re gtop, the

former condition being automatically satisfied for physical coupling and the latter being

fulfilled when Re t is interpreted as the volume of the two-cycle.

The expression (A.17) can be further rewritten with the help of Bernoulli numbers Bn,

defined by

z

ez − 1
=

∞
∑

n=0

Bn
zn

n!
, |z| < 2π , (A.18)

and satisfying

B2n+1 = 0 (n > 0), B2n = (−1)n−1|B2n| . (A.19)

The first few values are B0 = 1, B1 = −1/2, B2 = 1/6 and B4 = −1/30. Subtracting from

(A.18) its derivative multiplied by z we obtain

(z/2)2

sinh2(z/2)
= B0 +

∞
∑

n=1

Bn
(1 − n)zn

n!
, (A.20)
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and so, by virtue of the properties of Bn,

Ftop =

∞
∑

k=1

Qk

k3



g−2
top +

∞
∑

g=1

(−1)g
(2g − 1)

(2g)!
|B2g|k

2gg2g−2
top



 . (A.21)

This can be written in terms of the polylogarithms

Lis(z) =

∞
∑

k=1

zk

ks
, |z| < 1 , (A.22)

as

Ftop = g−2
top Li3(e

−t) +

∞
∑

g=1

(−1)g
(2g − 1)

(2g)!
|B2g| g

2g−2
top Li3−2g(e

−t) . (A.23)

In the limit t → 0, we obtain [28]

Ftop = −
1

2

(

t

gtop

)2

log t +
1

12
log t −

∞
∑

g≥2

B2g

2g(2g − 2)

(gtop

t

)2g−2

+ g−2
top ζ(3) +

∞
∑

g≥2

(−1)g
(2g − 1)

(2g)!
|B2g| g

2g−2
top ζ(3 − 2g) ,

(A.24)

where we made use of the identity Lis(1) = ζ(s).

Observe that when deriving (A.23) the expansion (A.18) was used, which is valid under

the condition |z| < 2π, or |kgtop| < 2π. In (A.17), however, this condition is satisfied only

up to a certain integer k. The result (A.24) is therefore not rigorous. A careful analysis of

the asymptotic expansion at weak topological coupling gtop has been given in [40, 41].

Finally, substituting t = 2πV and comparing (A.24) with (A.11) yields

F (Y,Υ) = CFtop(gtop, z) (A.25)

with

C =
iΥ

128π
,

g2
top = −

π2Υ

16(Y 0)2
,

(A.26)

where we used β = −1/2.

For the conifold, it follows from (A.24) and (A.26) that in the limit V = −iY 1/Y 0 → 0,

the higher coupling functions F (g)(Y ) are given by

F (g)(Y ) = i
Ag

(Y 1)2g−2
, g ≥ 2 , (A.27)

where

Ag = −
42−2g

256π

B2g

g(2g − 2)
. (A.28)

Observe that the coefficients Ag are alternating in sign.
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